Fracturing in Concrete via Lattice-particle Model

نویسندگان

  • JAN ELIÁŠ
  • ZDENĚK P. BAŽANT
  • Jan Eliáš
  • Zdeněk P. Bažant
چکیده

Numerical simulation is used to explore the behavior of concrete beams of different sizes and different notch lengths, loaded in three-point bending. The entire range of notch depth is studied. One limit case is type 1 fracture, which occurs when the notch depth is zero and the crack initiates from a smooth surface (this is the case of the modulus of rupture test). Another limit is type 2 fracture, which occurs for deep enough notches. Both cases exhibit very different size effects. The fracture is simulated numerically with a robust mesolevel lattice-particle model. The results shed light on the transitional behavior in which the notch depth is non-zero but not deep enough for developing the the type 2 size effect dominated by energy release from the structure. In agreement with experimental observations and theoretical predictions, the numerical results show evidence of a decreasing macroscopic fracture energy as the ligament gets very short.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

توسعه مدل شبکه -دانه مجزای بتن برای سنگدانه‌های غیردایروی

In this paper, Lattice-Discrete Particle Model (LDPM) of concrete has been extended in 2-D to account for the effect of non-circular aggregates. To this end, the flexible equation of super-ellipse is employed for generating aggregates in order to add the simulation possibility of a greater spectrum of aggregate samples in 2-D to lattice-Discrete particle Model. Alongside this extention, require...

متن کامل

Dispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model

Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...

متن کامل

Lattice numerical simulations of hydraulic fractures interacting with oblique natural interfaces

The hydraulic fracturing propagation is strongly influenced by the existence of natural fractures. This is a very important factor in hydraulic fracturing operations in unconventional reservoirs. Various studies have been done to consider the effect of different parameters such as stress anisotropy, toughness, angle of approach and fluid properties on interaction mechanisms including crossing, ...

متن کامل

Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice–Particle Model

This work presents a lattice-particle model for the analysis of steel fiber-reinforced concrete (SFRC). In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental result...

متن کامل

Hydraulic fracture propagation: analytical solutions versus Lattice simulations

In this work, we used a grain-based numerical model based on the concept of lattice. The modelling was done to simulate the lab experiments carried out on the mortar samples. Also the analytical solutions corresponding to the viscosity-dominated regime were used to estimate the fracture length and width, and the results obtained were compared with the numerical simulations. As the analytical so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011